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Abstract—This work devises a minimum bit error rate (BER)
block-based precoder used in block transmission systems with
the proposed cascaded zero-forcing (ZF) equalizer. The study
framework is developed as follows. For a block-based precoder,
a received signal model is formulated for the two redundancy
schemes, viz., trailing-zeros (TZ) and cyclic-prefix (CP). By ex-
ploiting the property of oblique projection, a cascaded equalizer
for block transmission systems is proposed and implemented with
a scheme, in which the inter-block interference (IBI) is completely
eliminated by the oblique projection and followed by a matrix de-
gree-of-freedom for inter-symbol interference (ISI) equalization.
With the available channel state information at the transmitter
side, the matrix for ISI equalization of the cascaded equalizer is
utilized to design an optimum block-based precoder, such that the
BER is minimized, subject to the ISI-free and the transmission
power constraints. Accordingly, the cascaded equalizer with the
ISI-free constraint yields a cascaded ZF equalizer. Theoretical
derivations and simulation results confirm that the proposed
framework not only retains identical BER performance to pre-
vious works for cases with sufficient redundancy, but also allows
their results to be extended to the cases of insufficient redundancy.

Index Terms—Block transmission systems, cascaded equal-
izer, channel state information, inter-block interference (IBI),
inter-symbol interference (ISI), oblique projection, precoder,
zero-forcing (ZF).

I. INTRODUCTION

I NTER-SYMBOL interference (ISI) induced by the channel
often significantly impairs simple receiver performance. To

alleviate this effect, block transmissions are widely adopted [1],
[19]. In such a transmission scheme, the transmitted data stream
is divided into consecutive equal size blocks and redundancy is
added between blocks. Given proper selection of redundancy
length, the inter-block interference (IBI) can be completely re-
moved. Examples of this block transmission include discrete
multitone (DMT) [16], [18] and orthogonal frequency division
multiplexing (OFDM) modulations [4], [15], [17], which have
been adopted in standards [14] and [5]. Previous studies have
demonstrated that many existing modulations can be formulated
within a unifying multirate filterbank transceiver model [2], [7],
[9], [32]. Building on this framework, the FIR filterbanks used
in the transmitter/receiver are usually known as FIR filterbanks
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precoder/equalizer (or are simply termed precoder/equalizer).
Particularly, the precoder/equalizer with the property of perfect
reconstruction (PR) is a zero-forcing (ZF) precoder/equalizer
[2], [23], [26]. A situation in which the length of the FIR fitler-
banks does not exceed block-plus-redundancy/block size is re-
ferred to as a zero-order (or a block-based) precoder/equalizer.
To facilitate discussion, the nonblock-based transceiver gener-
ally represents that both the precoder and the equalizer are not
restricted to being zero-order. Relaxing the PR constraint re-
veals the potential of filtered multitone (FMT) modulation in
many applications [24]. However, this study restricts itself to the
problem of PR with a (FIR filterbanks) ZF equalizer, especially
for a block-based precoder over physical single-input–single-
output (SISO) channels.

Consider a system in which the serial data stream is divided
into blocks of data symbols, and every transmitted sym-
bols contain redundancy. Notably, the PR is impossible
for for a nonideal channel [9], [23]. Hence, satisfies

, and 1 is the minimum redundancy. In [23], Xia
demonstrated a general condition for the existence of the non
block-based transceiver. Furthermore, when the precoder is re-
stricted to being block-based, the necessary and sufficient con-
ditions of the nonblock-based ZF equalizer have been studied in
[2]. Assume that the FIR channel is of order . With sufficient
redundancy (i.e., ), [2] verified that a block-based
equalizer can completely eliminate IBI. Additionally, in [2] and
[23], any precoder with redundancy of the form trailing-zeros
(TZ) is shown to be a channel-independent precoder provided

is satisfied. In the case of minimum redundancy,
i.e., 1, the PR test condition on channel zeros is given in [2] and
[23]. Subsequently, Lin et al. proposed a method [27] based on
a given and the zeros of the channel, in which the minimum
redundancy for the existence of the nonblock-based transceiver
can be determined exactly. In [11] and [27], it was demonstrated
that the minimum redundancy for a block-based transceiver is
given by , where denotes the ceiling integer.
For such block-based transceivers employing redundancy TZ of

, the channel matrix for the PR test differed from the ma-
trix used in [2]. Interestingly, in [26] Kung et al. also observed
the reduced channel matrix for the PR test. Recently, in some
aspects, Pohl et al., in [29], extended the results of Lin et al. in
[27] and Kung et al. in [26] to the PR problem of physical mul-
tiple-input–multiple-output (MIMO) channels. However, for the
physical SISO channels, [29] did not include the case of em-
ploying a block-based ZF equalizer for a block-based precoder
with redundancy TZ of [29, Ex. 4].
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For the case of ZF equalization, the joint design of linear
block-based transceiver has also been studied for the physical
SISO channels [2], [10], and [20]. The previous designs assume
sufficient redundancy and make the channel state information
available in the transmitter for exploitation. Particularly, by ex-
ploiting the property of convexity, Ding et al. in [10] obtained
a minimum bit error rate (min-BER) precoder for block trans-
mission systems with ZF equalization. Their results closely cor-
responded to the convex optimization framework developed by
Palomar et al. in [25] under the ZF constraint. Rather than the ZF
constraint, designs with other criteria are addressed in [2], [11],
[20], [37]–[39]. Again, the aforementioned works considered a
block-based precoder with sufficient redundancy. However, de-
signs with smaller redundancy increase spectral efficiency.

The previous discussion demonstrates that the min-BER
block-based precoder for ZF equalization has not been solved
for insufficient redundancy, i.e., . Particularly, a
block-based transceiver with redundancy TZ of , suggested
in [11] and [27], was not considered in [10] for min-BER
precoder design. Moreover, if the channel scenario is allowed
for PR under the case of minimum redundancy, how to design
a block-based min-BER precoder for ZF equalization is of
priority concern. To solve these problems, this study exploits
the property of oblique projections to devise a new equalizing
scheme, and then designs an optimum block-based precoder
to minimize the BER. A follow up study allows the results in
[2] and [10] to be extended to the case of insufficient redun-
dancy. Originally, the oblique projections for signal processing
applications were proposed by Behrens et al. in [12]. Oblique
projections were seldom used in literature and have recently re-
ceived attention in [13], [28], and [31]. For block transmission
systems, the oblique projection has been applied to implement
the nonblock-based ZF equalizer of [2] via a decomposition
approach [6], [21]. In fact, from the perspective of the oblique
projection framework, the conventional OFDM modulation,
using sufficient cyclic-prefix (CP) redundancy, is nothing but
a special design to avoid IBI. Additionally, its receiver indeed
performs a block-based ZF equalizer. Interestingly, this ob-
servation is, perhaps beyond the expectations of Behrens and
Scharf in [12]. That is, the transceiver design here is more gen-
eral and can be adopted for completely canceling IBI whether
for sufficient or insufficient redundancy.

The rest of this paper is organized as follows. For a block-
based precoder, Section II formulates a general received signal
model for block transmission systems, which can be determined
once the parameters , , and the redundancy scheme are
clarified and the channel order is known. Section III then
reviews the mathematics of oblique projection operators that
are widely used in this paper. Given knowledge of the associ-
ated parameters, the received signal model can be constructed
and the ZF equalizer subsequently expressed by oblique pro-
jection. Next, Section IV introduces a new equalizing scheme
and addresses the optimum design of the min-BER block-based
precoder. Section V summarizes simulation results that con-
firm the validity of this study. Conclusions are finally drawn in
Section VI.

Notation: Boldface lowercase letters denote column vec-
tors, boldface uppercase letters indicate matrices, and italics
denote scalars. and represent the th and

th elements of matrix and vector , respectively. Matrix
and vector entries are indexed starting from 0. and
denote the inverse matrix and the pseudo-inverse matrix of

. and indicate Hermitian transpose and transpose,
respectively. denotes the subspace spanned by the columns
of a matrix , while denotes the orthogonal complement
of . The magnitude of a scalar is denoted by .
and stand for the trace and Forbenius norm of a matrix,
respectively. denotes the identity matrix of size .
generally denotes the null matrix ( null matrix).
denotes the statistical expectation.
represents . denotes the Kronecker
product, while represents the Kronecker delta function.
The special notation indicates that is complex
Gaussian distributed with mean vector and covariance matrix

. Similarly, is used for scalars.

II. SIGNAL MODEL OF BLOCK TRANSMISSION SYSTEMS

This study addresses a block-based precoder and the
zero-forcing (ZF) equalization, particularly for physical SISO
channels. Hence, the transmitter model developed in [2] is
adopted, along with a received signal model formulated for
block transmission systems using ZF equalization. Some as-
sumptions made in [2] are introduced as follows.

<?Pub _kern Amount="-2.5pt"?>A0)During block transmis-
sions, the channel is assumed to be linear and time in-
variant (LTI).

A1) The channel is a causal th-order FIR channel, i.e.,
, and , .

A2) The length of each transmitted block of symbols and
that of the data symbols are chosen to satisfy
and . Generally, redundancy is required to smaller
than , i.e., .

A3) At the transmitter end, each block of data symbols
has a block-based precoder . Particularly, the precoder
is assumed to be a matrix and is of rank . At the
receiver end, a th order ZF equalizer is assumed;
That is, the ZF equalizer is an matrix.

In fact, A0) suggests an application scenario in which the
channel state is almost static or varies slowly. Intuitively, for a
specific channel, the assumption A0) is reasonable if the smaller
transmitted block size with the same relative redundancy (i.e.,
the same , see [2] and [27]) is employed. Addition-
ally, , of A1) guarantees that the channel order is
time invariant. Here, continuous time Nyquist transmitting and
receiving filters are assumed. These effects are included in the
channel model [8].

Fig. 1 illustrates the transmitter and channel model. To de-
scribe the model, the th block of data symbols are denoted
by the vector

. From A3), the vector of the transmitted sym-
bols is given
by

(1)
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Fig. 1. Discrete-time baseband equivalent transmitter and channel model. The advance elements and downsamplers parse the input data stream s(n) into blocks
of M symbols. The P �M precoder is denoted by F . The upsamplers and delay elements unblock the size-P transmitted blocks of u(n). The h(n) and v(n)
denote the channel and additive noise, respectively.

At the receiver end, the vector
denotes the th block of the received

symbols. If the vectors of channel output, and additive
noise are denoted by

, and ,
respectively, then from A0)–A2) and (1), can be written as

(2)

where and are the Toeplitz channel matrices and
are defined as and ,
respectively, for . In (2), for the block ,

models IBI from the previous block , whereas
models ISI within the symbols of block .

For a th-order ZF equalizer given in A3),
consecutive blocks of in (2) can be stacked
into a vector for equalization while
denoting .
Similarly, denoting by and the
vectors and

, respectively.
Then . Furthermore, to cap-
ture the effect of the blocks of transmitted
symbols in a matrix form, the vector

, and the
vector are defined.
Using the previous notations, can be expressed as

(3)

where is a block Toeplitz channel ma-
trix whose first block of rows is , and

.
Since the precoder is of rank as stated by A3) and is

utilized to introduce the redundancy, it can be decomposed into
a full column rank redundancy generating matrix
and a square full rank matrix of dimension , . That is,

and exists. Particularly, two redundancy schemes are
considered, i.e., TZ, and CP. For CP systems,

is used, whereas for TZ systems,
is used. The matrix

can also be referred to as the precoder since is fixed.

For ease of demonstrating the new ZF equalizer proposed in
Section III, (3) is reformulated as follows. Let of (3) be de-
composed into the , , and
submatrices from left to right

. . .
...

...
. . .

. . .
. . .

(4)

Substituting (4) and into (3) and using the properties
of the Kronecker product [36] yields

(5)

where

(6)

and is defined similarly to , described be-
fore. Notably, , like in (4), has nonzero elements only in
its top right submatrix. Therefore, the size of the nonzero
columns of defined in (6) depends strongly on . Restated,
the selection of the redundancy scheme and the induced redun-
dancy (related to the parameters , , and ) affect the struc-
ture of in (5). Herein, a dynamic selection matrix
(where the column dimension is dynamic) can be defined to
extract the nonzero columns of . Consequently, applying
into (5) yields a general received signal model

(7)

where , and
. In

fact, and can be regarded as the effective channel
matrices, which combine the LTI channel matrix and the
redundancy generating matrix . Moreover, for block ,
includes the IBI effect that is caused by . A general received
signal model given by (7) has been formulated to devise a
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th-order ZF equalizer. Notably, the proposed signal
model differs from that of [2] in that the concatenation effect
of the matrix and the redundancy scheme is considered
in (7); in contrast, [2] focuses only on ZF equalization using
model , where is the lower submatrix
of in (4) and ([2, Eq. (24)–(29)]).

For subsequent ease of discussion, two symbols are defined
(in boldface), i.e., TZ-Systems and CP-Systems, for con-
structing the TZ and CP received signal models, respectively.
The symbols are defined as follows.

TZ-Systems: Substitute and into
(6) and (7), we have .
CP-Systems: Substitute and into
(6) and (7), we have .

Section III, based on (7), demonstrates that (or )
and the minimum can be determined to construct a TZ (or CP)
received signal model for ZF equalization once , , and are
specified. Moreover, the corresponding ZF equalizer, based on
an oblique projection, is derived.

III. ZF EQUALIZER WITH OBLIQUE PROJECTION

This section focuses on devising a ZF equalizer based on (7)
in the absence of noise. Designs in the presence of additive
noise will be investigated in Section IV. First, an overview of
the oblique projection operators that will be used extensively in
the rest of this paper is presented.

A. Oblique Projections

The basic notations for projections (including orthogonal and
nonorthogonal) are introduced in the following.

Definition 1—Projections [12]: A matrix is a projection if
and only if it is idempotent, i.e., .

Definition 2—Orthogonal Projections [12]: An orthogonal
projection has a null space that is orthogonal to its range. A
matrix is an orthogonal projection if and only if it is Hermitian
symmetry, i.e., . An orthogonal projection is denoted
by with a subscript referring to the range space , where

is termed the projector onto . Similarly, denotes the
orthogonal complement projection with range and null

. If has a null space , then
and .

Definition 3—Oblique Projections [12]: The projection
matrices that are not orthogonal are referred to as oblique
(nonorthogonal) projections. Oblique projections are not sym-
metric. An oblique projection is denoted by , with a
double subscript referring first to the range and second
to the null . The is a projection which projects onto

along a direction parallel to , and has the properties
and .

B. ZF Equalizer for Block Transmission Systems

This subsection describes how to construct a received signal
model for TZ systems (or CP systems) with the specified param-
eters , , and and how to employ the oblique projection to
devise a ZF equalizer. The following assumption is made, in ad-
dition to A0)–A3).
A4) The channel state information (CSI) is fully known at the

receiver.

Moreover, the ZF equalizer is devised by first offering the
following definition.

Definition 4—ZF Equalizer: Consider the additive noise
of in (7) to be absent (as in the noise-free case or

in a case of sufficiently high signal-to-noise ratio); the
matrix is a ZF (or perfect reconstruction, PR) equalizer if
the condition holds, where
denotes the th block of equalized symbols and represents
the system delay. Since does not affect the existence and
uniqueness of , then without a loss of generality, we take

in this paper, , i.e., (see [2, fn. 2]). The PR
condition suggests that a ZF equalizer possesses the following
two properties:
P0) to remove IBI from the previous block to be IBI-free;
P1) to equalize ISI within the symbols of to be ISI-free.

As demonstrated in Theorem 1, given specified , , and ,
of the TZ-Systems can be determined to construct the re-

ceived signal model of TZ systems, i.e., . Moreover,
based on the constructed , the conditions (e.g., min-
imum block size ) under which an oblique projection can be
defined are provided to devise an equalizer with properties P0)
and P1) of Definition 4, i.e., a ZF equalizer, for retrieving .
The same applies to Theorem 2 for CP systems.

Theorem 1—TZ Systems: Assume A0)–A4) hold and the
triplet is known for TZ systems. For ,

, while for
, is any matrix with positive integer

. Based on the definition of TZ-Systems, is con-
structed. In the absence of noise and for a given , if the block
size is chosen to satisfy the condition

if
if

(8)

and if the composite matrix of has full
column rank, then there exists a unique th-order ZF
equalizer such that . The ZF
equalizer is given by

(9)

where is the oblique projection from Definition 3 and
is the oblique pseudo-inverse corre-

sponding to [12], [13].
Proof: From Section II, it is known that A0)–A3) hold

for building of (7). The signal model of TZ systems is
rewritten in the absence of noise as follows to fa-
cilitate the subsequent derivation of a ZF equalizer, based on the
definition of TZ-Systems

(10)

where

and
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If , , and are known, then of is determined as fol-
lows. The fact that has nonzero elements in its top
right submatrix [see two lines below (2)] implies that con-
tains nonzero columns for and

is a null matrix for . This is because
and [see (4)]. Therefore,

extracting the nonzero columns of requires that
is obtained for

; in addition, is any matrix with positive integer
for .
Consequently, given , of (10) is constructed.

It follows that for , of is a
composite matrix and is guaranteed to

be a tall matrix if is chosen to satisfy
. Similarly, for ,

is a tall matrix if holds. In this case, is ob-
tained by using the fact that in A2). Assume that A4)
holds and the of is tall and has full rank.
From Definition 3, an oblique projection can be defined
with range and a null space that includes [12]. Hence,

and are immediately obtained.
As indicated in Section II, for the block , includes the IBI
effect that is caused by . Consequently, the first term of (10)
(regarded as the structured noise in [12] and [13]) can be com-
pletely removed by and the second term is undisturbed
[12] if is preprocessed with . That is

(11)

Since is assumed to be full column rank to construct
, and since exists as described in Section II,

of (11) is also full column rank. Hence

(12)

where gives a unique solution to the linear system (11).
Accordingly, based on the results of (11) and (12),

, with the properties P0) and P1) of Definition 4
(via and , respectively), provides a unique ZF
equalizer such that . Based on [13],
we have , where
represents the oblique pseudo-inverse corresponding to .
From [12] and [13], the formulas for constructing and

are as follows:

(13a)

and

(13b)

where and are given in and .
This completes the proof.

For CP systems, Theorem 2 is obtained.
Theorem 2—CP Systems: Assume A0)–A4) hold and the

triplet is known for CP systems. For ,

is an identity matrix , while for , is a
matrix and

Based on the definition of CP-Systems, is con-
structed. In the absence of noise and for a given , if the block
size is chosen to satisfy the condition

where
if
if

(14)

and if the composite matrix of has full
column rank, then there exists a unique th-order ZF
equalizer such that . The ZF
equalizer is given by ,
where and are constructed using the formulas in
(13).

Proof: The derivation resembles that of Theorem 1, with
[21] providing the reference for and [6] providing the
reference for .

Remarks

The following remarks are made regarding the ZF equalizer
of Theorems 1 and 2.

1) For TZ systems, based on Theorem 1, (8) can be rewritten
as for (i.e., insufficient
redundancy). Similarly, for CP systems, from Theorem 2,
(14) can be rewritten as for . In
these two cases, our results demonstrate that a smaller
is obtained compared to the condition, ,
as shown in [2, a1.1]. Moreover, if is set to equal 1 for
TZ systems with , the so called minimum
redundancy can be obtained for a block-based transceiver
given by Lin et al. in [11] and [27], namely,

.
2) Consider for TZ systems, then from Theorem

1, can be set to 1 (i.e., block-based), and can be any
matrix with positive integer . In this case, , and

of (4) becomes , and , respectively, while of
(4) is a null matrix. Based on the definition of TZ-Systems,

is a null matrix and contains the first
columns of . Consequently, from Definition 2,

. Substituting into of (13a) and thus
from (9), , which is the
same ZF solution given in [2] (see [2, Th. 2]). From the
perspective of the oblique projection framework, [2, Th. 2]
is included in Theorem 1.

3) Considering for CP systems, then
of A2) results in a situation where . Thus,

from Theorem 2, can be set to 1 (i.e., block-based)
and . In this case, as is now
demonstrated, of Theorem 2 can be simplified.
From Remark 2, for , then it is immediately found
that and , while is null. Based
on these analytical results, according to the definition of
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CP-Systems, and can
be obtained and is null. Additionally, the ma-
trix

(column permutation of the nonzero
columns of can be obtained. Correspondingly,
last columns of . Since the top submatrix of

the last columns of is an upper triangular Toeplitz
matrix, then based on the Definition 2, is readily ob-
tained, and is given by

(15)

From Theorem 2,

To simplify , by using , (15), and
the structure of [see one line below (2)], can
be reduced to , where
is a circulant Toeplitz matrix with the first column

. Therefore, based on
the idempotent and Hermitian properties of (see Defi-
nition 1 and 2)

(16)

If DFT-based is considered, i.e., , and is given
by

for (17)

the eigenvalue-decomposition of can be expressed as
, where denotes a diagonal matrix, whose diag-

onal elements are the -point DFT of the entries of the first
column of [33]. Based on the previous, the block-based ZF
equalizer of (16) for DFT-based CP systems can be obtained as
follows:

(18)

Interestingly, has been widely used in conven-
tional DFT-based CP systems. That is, removes
symbols with IBI from the previous block, denotes in-
verse DFT, and implements one-tap equalizer on each sub-
channel. Obviously, from the perspective of the oblique projec-
tion framework, our results demonstrate that the conventional
CP-OFDM equalizing steps are an implementation of a block-
based ZF equalizer, as indicated in (18).

Based on the results in this section, one may ask why the
blocks should not be made larger from the beginning, to ensure
that the redundancy is always sufficient. Yes, if blocks of size

instead of are used, then the increased redundancy (for
a fixed relative redundancy) can yield a block-based ZF equal-
izer provided is satisfied. Nevertheless, in this
case, both the transmitter and the receiver would have to suffer a
longer delay for precoding and equalizing each size block.

In contrast, without any modification of the transmitter (such as
a spectral mask or a precoding delay), the receiver can simply
stack size blocks for ZF equalization [where satisfies
(8) or (14)] once it knows that the estimated channel order ex-
ceeds the transmitter-induced redundancy. Notably, minimum

is no larger than . Moreover, applying the pipelining hard-
ware implementation to the blocks ZF filterbanks equalizer
yields only an initial buffer delay for retrieving size blocks.

IV. NEW EQUALIZING SCHEME AND MINIMUM

BER PRECODER DESIGN

This section describes the optimum design in the pres-
ence of additive noise. In particular, this study designs an
optimum block-based precoder (we mean here, as explained
in Section II) for minimizing BER, subject to the transmission
power constraint, for block transmission systems with ZF
equalization. Hence, the following assumptions are made.

A5) The additive noise is assumed to be stationary and
white, and .

A6) The CSI is available in the transmitter end.
Unlike other optimum designs that deal only with cases of

sufficient redundancy, the design presented herein is expected
to be applicable to systems with sufficient or insufficient redun-
dancy. Hence, a new equalizing scheme is proposed.

A. New Equalizing Scheme

The idea of a cascaded equalizer is defined as follows to elim-
inate IBI in case the transmitter-induced redundancy is insuffi-
cient, and to simultaneously provide a similar ISI equalization
mechanism, as adopted in previous works on cases of sufficient
redundancy.

Definition 5—A Cascaded Equalizer: If the equalizing
scheme for block transmission systems can be definitely for-
mulated into a cascade configuration, in which IBI cancellation
is followed by a block-based ISI equalization, it is termed a
cascaded equalizer. Particularly, if both properties P0) and
P1) of a ZF equalizer (see Definition 4) hold, a cascaded ZF
equalizer is defined.

Recall the proof of Theorem 1 for TZ systems. The oblique
projection was employed to preprocess the received signal

of (10). Consequently, as indicated in (11), the
term , which contains IBI, is completely eliminated;
meanwhile, the term , which contains the desired
block of symbols , remains undisturbed. Interestingly,
the matrix defined in (6) yields the fact that the upper

submatrix of is empty [see (4) and (6)].
Therefore, only the lower submatrix of the preprocessed
signal in (10) contains information about
and can be extracted and equalized independently.

Based on the previous, a new equalizing scheme is proposed
for TZ systems. To describe this scheme, the following prelim-
inary conditions are required to hold.

C0) The is given, and then is determined
based on the result of Theorem 1.

C1) The block size is decided to satisfy the condition in
(11) of Theorem 1.

C2) The received signal model is constructed
using the definition of TZ-Systems. Additionally, the
matrix of is assumed to have
full column rank.
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With C0)–C2), the oblique projection can be con-
structed by (13a). The proposed equalizing scheme is then
implemented as follows. In the first stage, is
preprocessed by . Then, an IBI-free received signal

is obtained
[cf. (7) and (11)]. Subsequently, the extraction matrix

can be defined to extract the lower
submatrix of the previous signal. Denoted by

the reduced received signal, we have

(19)

where is a matrix;
is the oblique projected noise and

as A5) holds. Notably,
of (19) is of full column rank due to the full rank assumption

of in C2). Next, in the second stage, a block-based (i.e., a
matrix) equalizer can be designed such that the th

block of equalized symbols, denoted by , can be obtained
from (19), i.e.,

(20)

Based on the results of (19) and (20) and the Definition 5,
we demonstrate that the new equalizing scheme is a cascaded
equalizer. Notably, the proposed equalizing scheme is not
necessarily a cascaded ZF equalizer because property P0) of a
ZF equalizer only holds in the first stage and offers a matrix
degree-of-freedom in the second stage. Since the proposed
equalizing scheme was not initially developed only for the
cases of insufficient redundancy, as expected, it can be applied
to all systems with sufficient or insufficient redundancy. Al-
though the proposed scheme was developed for TZ systems,
a cascaded equalizer can easily be obtained for CP systems
by simply replacing , (8), Theorem 1, TZ-Systems, and

in C0)–C2) with , (14), Theorem 2, CP-Sys-
tems, and , respectively, and following the previous
two stages.

B. Minimum BER Precoder

As indicated in (19) and (20), applying the proposed equal-
izing scheme eventually yields a block-based equalizer, matrix

, for ISI equalization, for both sufficient and insufficient re-
dundancy. Interestingly, this result is quite similar to those of the
equations used in other works to optimize precoders with suffi-
cient redundancy [2], [10], [20], [25], and others. Notably, un-
like in previous works that assume that the noise is full-rank, this
study addresses the fact that the oblique-projected noise
in (19) is a reduced rank noise, as we will discuss later. There-
fore, the results associated with previous designs in [2] and [10]
cannot be applied directly to the design problem herein without
modifications. Additionally, [10] employs different dimension-
alities of for TZ and CP systems [10, Sec. II-B], while the
proposed new equalizing scheme yields the same dimension-
ality of for both TZ and CP systems.

Since the proposed cascaded equalizer can eliminate IBI in
the first stage, particularly for a precoder with insufficient redun-
dancy, the minimum BER block-based precoder can be de-

signed for ZF equalization with constrained transmission power
by beginning from the second stage, as in (20). The following
assumption is made in proceeding the design.

A7) The data symbols are zero-mean, uncorrelated and
with average power 1, i.e.,

. Also, and are mutually uncorrelated. For
simplicity, equiprobable BPSK modulation is adopted.
Meanwhile, the zero threshold detection is used in the
receiver.

The transmission power equals the power used to
transmit the block of data symbols, and is expressed
as . For sim-
plicity, the power consumed by CP is neglected and thus

is used for both TZ and CP systems
(see [10] for details). Actually, neglecting the power of CP
is reasonable if less CP is used in the case of insufficient
redundancy.

As discussed in Section IV-A, the proposed cascaded equal-
izer must also exhibit the property P1) of a ZF equalizer to
achieve ZF equalization. Consequently, by imposing an ISI-free
constraint, on for a given , the proposed cas-
caded equalizer can yield a cascaded ZF equalizer. The design
problem is then formulated as follows: For TZ systems, given
(20), an optimum precoder is designed such that the average
BER is minimized, subject to ISI-free and to transmission power
constraints, i.e., and , where
is a constant power.

Now, consider block-by-block detection, relying on (20), in
which case the average BER of the detected symbols is the
average of the error probability of each symbol of the block, that
is

(21)

where denotes the error probability of the th symbol.
Since the average power of each equalized symbol is unity
(from A7), and the ISI-free constraint ) and the
covariance matrix of the equalized oblique projected noise of
(20) is , the error probability of the th
symbol for the BPSK modulation (we adopt [2, (79)] with unity
average power) can be expressed as

(22)

where and
represents the noise vari-

ance of the th equalized symbol of (20). Substituting (22) into
(21) and using the covariance matrix of , defined below
(19), yields

(23)

where denotes the normal-
ized covariance matrix of the oblique projected noise. From [10]
and [25], it is clear that if the noise variance is less than

for all the average BER of (23) is
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a convex function. That is, the convexity of holds given a
sufficiently high signal-to-noise ratio (SNR) at each th equal-
ized symbol. Assume that the convexity of holds. Then, by
applying Jensen’s inequality [34], the lower bound on can
be obtained, i.e.,

(24)

(25)

1) Minimize Only the Quantity : Interestingly, as
demonstrated here, minimizing the quantity of (25)
involves the application of a maximum SNR (max-SNR) cri-
terion, as considered in [2]. The is a strictly monotone
decreasing function with respect to . Consequently, except for
the trivial solution, maximizing the element of the bracket of
(25) involves minimizing the quantity . Substituting the
oblique projection of (13a) into [see the line below (23)],
we have

(26)

Since the ISI-free constraint results in (22)–(25), by using
(26), and given that , the problem of min-
imizing of (25) can be formulated as

subject to (27)

Given (27), the numerator, from A7), represents times
the average total signal power of a block of equalized sym-
bols. Clearly, since scale also appears in the denominator,
problem (27) maximizes the signal (total)-to-noise (total) power
ratio, subject to the ISI-free constraint (see Section V-B of [2]).
Directly solving problem (27) is difficult since the co-
variance matrix is not a positive-definite matrix [see the
right-hand side of (26)]. The nonpositive definite matrix results
from the rank by Definition 3 [12] and the full column
rank matrix . To simplify the objective function of
(27), consider to be composed of an full-rank matrix

and the matrix ; that is

(28)

Since yields rank ,
is obtained based on the fact that is a full matrix from A4)
and the matrix is of rank . Hence, (28) has no
loss of generality. By substituting (28) into (27), the formulated
problem of (27) can be rewritten as

subject to (29)

To solve (29) with respect to and , we invoke the
weight inner-product for matrices which is defined as

, where is a nonsingular
matrix. Particularly, if , . Ap-
plying the general Cauchy–Schwarz inequality yields (30)
shown at the bottom of the page, where the first equality
relied on the constraint in (29) and the choice of

. Accordingly, the max-

imum of (30) is achieved if .
Clearly, is justified as a full-rank matrix, defined in
(28), since , and of are all
full-rank matrices. Substituting into (28) and the constraint
of (29), we have

(31)

and

(32)

If A6) holds, then is known to solve (32). Con-
sider the eigenvalue-decomposition [3]

(33)

where and denote the unitary and positive-diagonal
matrices, respectively. Given (33), by solving (31) and (32), the
optimum and for minimizing (i.e., ) are

(34)

With the power constraint, i.e., , (34) is scaled

by a constant .
2) Minimize and Equalize the Jensen’s Inequality

of : As mentioned previously, the Jensen’s inequality of

(30)
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(24) is valid only when is less than for
all . Furthermore, the equality in (24) can hold if and only if

are equal for all . Therefore, by considering the
convexity constraint, the design goal should be formulated as
follows:

(35a)

subject to (35b)

(35c)

for all

and (35d)

where is given by (25). We will demonstrate that a par-
ticular choice of and can simplify the problem of (35) and
achieve the design goal. To satisfy (35b), we consider

(36)

In (36), exists as described in Section II. Furthermore,
applying the singular value decomposition [3], [22] to parame-
terize [2], [10], and [25] yields

(37)

where and are both square unitary matrices of dimension
, and is a positive diagonal matrix. By substituting

(33), (36), and (37) into (26), (26) can be rewritten as

(38)

Since the relation between and is given by (36),
minimizing in (35a) is equivalent to minimizing the
denominator, i.e., [see (25)]. Given this fact
and based on substituting (37) into (35d), (38) into (35c) and

, the problem (35) can be reformulated as
follows:

(39a)

subject to

for all (39b)

and (39c)

where (39a) and (39c) were derived using the relation
for compatible matrices and .

The design goal of (35) is then reduced to (39), and (39) is
similar to the design problem, formulated in [10] and [25] (see
[10, (28)] [25, (51)], respectively). By applying [10, Lemma
1], the optimum of (37) is given by , where

denotes the normalized DFT in (20), while by applying
the Appendix of [10], the optimum and of (37) are

obtained by and ,
respectively. Notably, the optimum adopted herein is

not the only one choice. For example, the normal-
ized Hadamard matrix is also an optimum solution when
is to the power of two (see [10] and [25] for details). With
the previous results, as well as (37), and (36), the optimum
min-BER precoder and the equalizer , subject to a bound
on transmission power, are given by

(40)

Fig. 2 illustrates the new transceiver model of TZ systems
employing a cascaded ZF equalizer and a min-BER precoder.
As stated earlier, the optimum designs derived in this sub-
section are all applicable to CP systems since a cascaded
equalizer and the results of (19) and (20) can also be obtained
for CP systems. Although the previous designs are derived
for BPSK, these results can be extended to other high-order
constellations. A brief explanation is as follows. For an -ary
QAM constellation (assuming that a Gray mapping from bits
to symbols is used) under additive Gaussian noise, the BER
of the th equalized symbol of (20) can be approximated
by ,

where and are con-
stants for a given , and denotes the average power of the th
equalized symbol [25], [38]. Substituting the assumed average
power, 1, in A7) and the ISI-free constraint
yields . Consequently, the expression of is
similar to (22) and can be applied to create optimum designs
by the same method.

Remarks

The following observations are made.
1) Condition C2) suggests that the channel should be a perfect

reconstruction (PR) channel. For TZ systems, recall the
proof of Theorem 1 that of contains
nonzero columns for . Since the top

submatrix of is an upper
triangular Toeplitz matrix, the PR test matrix can be further
reduced from

to the lower rows of

as observed by Kung et al. in [26] (see [26, Ex. 2]). Never-
theless, we address that the min-BER design presented here
does not rely on the reduced PR test matrix, but instead re-
lies on the matrix of (19). Thus, a min-BER
design is obtained for a block-based transceiver with re-
dundancy TZ of [11], [27], which was not considered
by Ding et al. in [10]. Also, as demonstrated in Remark 1
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Fig. 2. Transceiver model for TZ systems employing the min-BER block-based precoder and the proposed cascaded ZF equalizer.

of Section III-C, with the results of Theorems 1 and 2, a
minimum can always be offered for the min-BER de-
sign, particularly for insufficient redundancy cases. This
finding implies the necessity and significance of Theorems
1 and 2.

2) For TZ systems with , the results presented
in Remark 2 of Section III-C can be used to fulfill the
conditions C0)–C2). Hence,
when , and is an identity matrix. Sub-
stituting and into (33) yields

. With this result, we can sim-
plify (34) and obtain and

, the same as the re-
sults in [2] (see [2, (57)], where the constant scale
of (57) is considered unity here). Similarly, we ob-

tain and

by
simplifying (40), identical to the results in [10] (see [10,
(13) and (36)]).

3) As indicated in (20), the proposed equalizing scheme offers
a matrix degree-of-freedom, i.e., . Therefore, the MMSE
criteria studied by Palomar et al. in [25] and [30] for suf-
ficient redundancy can also be applied to . Interestingly,
if CSI is unavailable at the transmitter and is employed
with , then an alternative implementation of
the ZF equalizer in Theorems 1 or 2 is obtained. This fact
has been shown in [6] and [21] for CP systems (e.g., see
[6, pt. 3.3]) and can be similarly extended to TZ systems.
Notably, the concept of the proposed equalizing scheme
resembles the notion proposed in [29] for physical MIMO
channels. This study begins from the exploitation of a cas-
caded equalizer, while the authors [29] started by utilizing
dynamical coordinate transformations of the PR channels,
i.e., the decomposition of PR channels.

V. COMPUTER SIMULATIONS

This section conducted various simulation examples to verify
the proposed design in terms of BER. The BER is sketched as
a function of (dB), where is the average energy per
bit, i.e., , and is the noise power
spectral density. Except for the equalizers in Theorems 1 and
2, our min-BER design, i.e., (40), was implemented with a cas-
caded equalizer, as depicted in Fig. 2. Similarly, the max-SNR

Fig. 3. Comparison of BER performance for TZ systems with the proposed
designs. (a) Sufficient redundancy case: (P;M;L) = (20; 16; 4) with channel
h (n). (b) Insufficient redundancy case: (P;M;L) = (34;32;4)with channel
h (n). (c) Minimum redundancy case: (P;M;L) = (17; 16;4) with 100 ran-
domly generated channels.

design can be obtained by replacing the min-BER design in-
side the dashed-line box of Fig. 2 with the design of (34). For
CP systems, we simply substitute , , and
of CP systems for , , and of TZ systems, as
mentioned in Sections IV-A and IV-B. Furthermore, when the
OFDM precoder is employed for comparison, we use the DFT
basis in (17). The BER was computed according to (21) and
(23).

Example 1—TZ Systems

First, to check the validity of our designs in the case of suf-
ficient redundancy (i.e., ), channel and param-
eters from [2, Fig. 8] were used. Specifically, we considered

with , and for a channel of
order with zeros at 1, , , . Fig. 3(a)
compared BER performances for the OFDM precoder and our
equalizer in Theorem 1, the CDMA precoder using Hadamard
basis and the equalizer in Theorem 1, our max-SNR design,
and our min-BER design. Additionally, the BER performances
of the equalizers using [2, (44)] for the OFDM and CDMA
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precoders are plotted. We also compared our designs with the
min-BER design in [10], [10, (36)] and with the max-SNR de-
sign in [2], [2, (57)]. As illustrated in Fig. 3(a), all of the pro-
posed designs performed as well as the corresponding ones in
[2] and in [10] for . Furthermore, as examined in [10],
designs with min-BER criterion demonstrated the best perfor-
mance. Notably, the performance of the proposed min-BER de-
sign did not improve further as was increased from 1 to 2.
This finding is expected since the IBI is completely isolated if
sufficient trailing zeros are used. Thus, increasing is no longer
useful for accurately estimating symbols.

Next, to further verify the validity of our design in the case
of insufficient redundancy, i.e., , we implemented
a system with and for the channel of

, as defined previously. Since the max-SNR design and
min-BER design were not discussed in [2] and [10], the BER
comparisons of Fig. 3(b) were given for the OFDM precoder
and the equalizer using [2, (29)], the OFDM precoder and our
equalizer in Theorem 1, our max-SNR design, and our min-BER
design. In this case, i.e., , a minimum (i.e.,
block-based) was required for our equalizer in Theorem 1 and
the optimum designs, while a minimum was required
in [2]. Indeed, the proposed framework provides a block-based
min-BER transceiver design for , but the re-
sults presented in [10] failed to consider this case. Fig. 3(b)
shows that the proposed min-BER design achieved the best per-
formance throughout most of the range for and

, respectively. Interestingly, we notice that the min-BER
design can further improve the BER performance near 1 dB by
increasing from 1 to 2 in the previous case. Moreover, the
equalizer with in Theorem 1 was shown to perform as
well as that with in [2]. In fact, this result can be proven
mathematically, as in the Appendix. Finally, we considered the
case of minimum redundancy, i.e., . The system
parameters are , , and , and 100 ran-
domly generated FIR channels, each with a unit 2-norm, were
utilized to calculate the average BER. This system investigated
all of the designs compared in Fig. 3(b). Again, the average BER
curves of Fig. 3(c) exhibit similar results to those of Fig. 3(b).
As shown in Fig. 3(c), our equalizer with minimum in
Theorem 1 and that with its minimum in [2] showed
identical BER performance. However, by increasing from 3
to 4, all of the proposed designs could achieve improved perfor-
mance. Furthermore, the proposed min-BER design performed
substantially better than all other designs for and ,
respectively.

Example 2—CP Systems

In this example, all compared designs employed CP except
those which are specified to stated, have used TZ. For the case
of sufficient redundancy, we considered , , and

. The randomly generated FIR channel was

. In Fig. 4(a), BER com-
parisons were given for the OFDM precoder and the equalizer
in Theorem 2, the OFDM precoder and the standard OFDM
receiver (use [2, (15)]), the min-BER design (use [10, (43)]),

Fig. 4. Comparison of BER performance for CP systems with the proposed
designs. (a) Sufficient redundancy case: (P;M;L) = (37; 32; 5) with channel
h (n). (b) Insufficient redundancy case: (P;M;L) = (13;8; 11) with 100
randomly generated channels. (c) Minimum redundancy case: (P;M;L) =
(17;16; 5) with channel h (n).

and the proposed min-BER design. Moreover, the BER per-
formances of the proposed TZ min-BER designs were also
sketched for comparison. For the case of , Fig. 4(a)
indicated that the proposed equalizer in Theorem 2 and the
proposed min-BER design, respectively, achieved identical
BER performance to the corresponding design in [2] and [10].
These observation results confirmed Remark 3 of Section III-C
and the validity of our min-BER design for the case of sufficient
redundancy. Again, the results shown in Fig. 4(a) reveal that
the proposed TZ min-BER designs with and ex-
hibited identical BER performance. Additionally, they achieved
a better BER performance than the proposed min-BER designs
in the previous case. Notably, the proposed min-BER design
with could improve BER performance by 0.8 dB as

was increased from 1 to 2 (or compared with the min-BER
design in [10]). Interestingly, for CP systems, even in the case
of sufficient redundancy, the BER performance of the min-BER
design in [10] could be further improved by using the oblique
projection framework with a larger . This finding differs
significantly from the results in Fig. 3(a) for TZ systems.

Furthermore, to verify the validity of the proposed designs in
the case of insufficient redundancy, a CP system with

and was especially implemented. The system param-
eters were , , and , and 100 randomly
generated FIR channels, each with a unit 2-norm, were utilized
to calculate the average BER. In Fig. 4(b), the curves compared
the average BER performance for the OFDM precoder and its
equalizer using [2, (29)], the OFDM precoder and our equal-
izer in Theorem 2, and also our min-BER design. In this case, a
minimum is required for our equalizer in Theorem 2 and
the min-BER design, while is required for the equalizer
in [2], as discussed in Remark 1 of Section III-C. According
to Fig. 4(b), the proposed equalizer with in Theorem
2 had an improved BER performance despite the fact that the
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proposed equalizer with failed to perform as well as the
equalizer with in [2]. Moreover, for and 3, respec-
tively, the proposed min-BER design achieved the best perfor-
mance. Similar to the results for the TZ systems, the BER per-
formance of our min-BER design can be further improved given
a larger . Finally, this study examines the case of minimum
redundancy. Specifically, a CP system with , ,
and was employed for the channel ,
as defined before. The BER curves compared among the de-
signs used in Fig. 4(b) are sketched in Fig. 4(c). Since
holds, it was observed that the equalizers in Theorem 2 and in [2]
not only had the same minimum , but also shared iden-
tical BER performance, as indicated in Fig. 4(c). Once again,
the proposed min-BER designs achieved the best performance
throughout most of the range, for and ,
respectively. Particularly, with increasing from 5 to 6, almost
3 dB was gained at a BER of around 10 in the case
considered here.

VI. CONCLUSION

In this paper, we have designed a minimum BER block-based
precoder and devised a cascaded ZF equalizer for block trans-
mission systems with sufficient or insufficient redundancy.
First, Theorems 1 and 2 can be used to determine the received
signal model and the minimum th-order ZF equalizer
of the TZ and CP systems, respectively, based on knowledge
of parameters , , and . Then, for a PR channel, by
exploiting the property of oblique projection, we proposed a
new equalizing scheme, i.e., a cascaded equalizer, in which
the IBI is completely eliminated by the oblique projection and
subsequently followed by a matrix degree-of-freedom for ISI
equalization, i.e., the matrix . Following imposing an ISI-free
constraint on , the cascaded equalizer leads to a cascaded ZF
equalizer. Consequently, the use of this cascaded ZF equalizer
enabled results such as the max-SNR and min-BER designs
in [2] and [10], respectively, to be extended to the case of
insufficient redundancy, as shown in Section IV. Simulations
have also demonstrated the validity of the proposed min-BER
design for CP and TZ systems with insufficient redundancy.
Moreover, the theoretical derivations and simulation results
have shown that the design framework can retain identical BER
performance to previous designs, such as those presented in [2]
and [10] for cases with sufficient redundancy. This study also
demonstrated that even in the case of sufficient redundancy, the
proposed framework can trade the complexity of the cascaded
ZF equalizer with improved BER performance for CP systems,
as indicated in Fig. 4(a). Similarly, this tradeoff can be utilized
with the proposed framework in cases with insufficient redun-
dancy. Since the proposed cascaded equalizer offers a matrix
degree-of-freedom for ISI equalization, whether for sufficient
or insufficient redundancy, designs incorporating other criteria
may represent a potential future research direction.

APPENDIX

This Appendix demonstrates the equivalency of the BER per-
formance between the th-order ZF equalizer in The-
orem 1 and the th-order ZF equalizer in [2], as indicated

in Fig. 3(b) and (c). Given and , defined in Section II,
the th-order ZF equalizer in [2] can be expressed as

, where
(see (22)–(29) in [2] and assume that has full

column rank). Let be decomposed into four block subma-
trices, , , , and , which are the upper left
submatrix, the upper right submatrix, the lower
left submatrix and the lower right

submatrix, respectively. Consequently,
based on the previous, can be simplified by applying
the definition of pseudo-inverse [3] and the inversion formula
for 2 2 block matrices [35]

(41)

where (41) is derived using the fact that matrix is a null ma-
trix. Substituting (41) into the previous , after some mathe-
matical manipulation, yields

(42)

where

The zero matrix of in (42) implies that the
th-order ZF equalizer in [2] is implemented effectively using

the th-order equalizing matrix, , if . As shown
in the following, equals the th-order ZF equalizer
in Theorem 1. For , the vector

can be constructed based on Theorem 1. Since the top
submatrix of is an upper

triangular Toeplitz matrix, the of can just

be employed to reduce the matrix of to

the lower rows of .

Subsequently, of equalizes the
lower vector of to
obtain . Accordingly, based on the previous fact and the
uniqueness property of the ZF equalizer derived from Theorem
1, must be identical to the th-order for
retrieving in .
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